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A one-dimensional system of hard-rod particles with rotational-like in- 
ternal degrees of freedom is considered. Particles interact with each other 
through the infinite-range, infinitely weak attractive Kac potential, and 
through a nearest-neighbor short-range potential. The latter depends also 
on the internal states of the interacting particles. Exact results for thermo- 
dynamic properties and for some correlation functions are obtained. It is 
found that the considered system exhibits several first-order transitions 
between phases with different "rotational structure," i.e., with different 
ordering with respect to the internal degrees of freedom. The calculated 
equation of state seems to suggest that in the solutions of liquid-crystalline 
substances in neutral solvents there may exist regions in which the coeffi- 
cient of thermal expansion is negative--an effect similar to that well known 
in liquid water. 

KEY WORDS: One-dimensional systems; liquid crystals; phase transi- 
tions; internal degrees of freedom; hard-core softening; rotational order. 

1. I N T R O D U C T I O N  

The  first s imple one-d imens iona l  mode l s  o f  dense molecu la r  systems with 
ro t a t i ona l  degrees o f  f r eedom were p r o p o s e d  by  Casey  and  Runnels  <1~ (CR).  

The  mode l s  consis ted  o f  hard ,  square  (p lanar)  par t ic les  on a line, a l lowed to 
ro ta te  a r o u n d  thei r  centers.  Only  the  ha rd -co re  in te rmolecu la r  in terac t ions  
were t aken  into  account .  In  the  la t t ice-gas mode l  (frozen t rans la t iona l  
mot ions) ,  a nonana ly t i c  dependence  o f  free energy on lat t ice separa t ion  was 
f o u n d :  a cusp in the  pressure  appea r s  a t  a la t t ice  spacing co r re spond ing  to 
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the smallest intermolecular distance at which a molecule may rotate com- 
pletely if both neighbors cooperate. In models allowing translations (free 
gas and harmonic models), the singularity disappears, and only some con- 
tinuous anomalies in thermodynamic quantities (e.g., a peak in the heat 
capacity at constant pressure) remain. Such anomalies could probably be 
interpreted as separating two "phases"  with different rotational structure, 
but this point was not investigated by CR. 2 It should also be mentioned 
that CR were unable to solve their models completely, mainly because of 
the two-dimensional character of  the rotational motion, and were forced 
to resort to approximate numerical computations. 

The phase transitions connected with the shape of molecules have also 
been investigated on the basis of Ising-type models (see, e.g., Boccara 
e t  al.~a~). 

In this paper we wish to propose a simpler model, which still exhibits 
the main features of the molecular rotations. This is the one-dimensional 
system of  hard rods with variable length l depending on the actual value of 
an internal parameter s: l = l ( s ) .  The changes of the length, i.e., of the 
smallest distance between the centers of mass of two neighbor particles, 
simulate in one dimension the main geometrical effect of rotation of non- 
spherical molecules. On the other hand, cooperative effects of  rotation 
connected with mutual evasions of elongated parts of molecules are at least 
partially lost. However, due to this one-dimensional degeneration of the 
rotation, the model becomes solvable not only for a pure hard-core poten- 
tial, but also for arbitrary additional nearest-neighbor interactions. 

The soft part of the interaction can also be made dependent on the 
actual values of the internal parameters (s~, sj) of two interacting particles 
(i, j) .  In this case, there appears a sequence of phase transitions at T = 0, 3 
separating several differently ordered phases. In our interpretation, this 
result simulates, in one dimension, the behavior of liquid-crystalline systems. 

The outline of the paper is as follows: in Section 2 the model is defined 
and the general solutions are given. Section 3 contains its simplest realiza- 
tion, equivalent to the CR model. Sections 4 and 5 present the solution and 
properties of another realization of our model, exhibiting the above-men- 
tioned sequence of phase transitions. In the last section we propose our 
interpretation of the presented results. 

2 Such structures were recently found and investigated in detail by Parlifiski et  al., ~2~ 
who performed molecular dynamics simulations of the one-dimensional model of the 
N2 crystal. 

3 The appearance of true phase transitions at nonzero temperatures is enforced, accord- 
ing to the results of Stell and Hemmer, (4-6~ by the addition to the interactions of an 
infinitely long, infinitely weak potential of the Kac typeF '8~ 
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2. T H E  M O D E L  

Consider a linear chain of classical hard rods with nearest-neighbor 
pair interactions 

too, r < lij. 
G j ( r )  = V ( l r ,  - rj[) = U(r  - -  liy), r > l~j (1) 

lsj = �89 + lj). Assume that the length ls of  the rod i depends on the value 
of some internal parameter ss: 

ls = ls(s3, 0 <~ ss <~ ,~ 

and that, in general, the soft part of the potential also depends on ss and sj: 

U = U(r  - / s  j; ss, sj) 

In other words, the interaction depends not only on the separation of the 
centers of interacting particles, but also on their internal states. 

A simple generalization of known results (1,97 gives the thermodynamics 
of this system in terms of the excess Gibbs free energy per particle g(p,  T) ,  
where p is the pressure and T is the temperature (k is Boltzmann's constant, 
a = tip, and fi = 1 /kT) :  

1 N N + I  g(p,  T )  = - k T  1xirn ~ ~ (~r- a QN) (2) 

with 

fo  fo~ = ds x dr e x p [ - a r  - fiV~.,j+l(r)] 

-= f f  dsU f l  [ ~ dr e x p [ - a r  - f iU(r  - l~,,+l)] 
j = O  "lt,t+ z 

= dsN I - [  f (s , ,  0 (3) 
i = 0  

where cyclic boundary conditions (ro = rN, etc.) have been used, and where 

f ( s j ,  sj + 1) = exp{-  �89 + l (sj  § 1)]} 

f; x dr exp(-c~r) e x p [ - t U ( r ;  sj, sj+l)] (4) 

Hence(lO) 

g = - k T  In Am~ x (5) 
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where A~a~ is the maximal eigenvalue of the Fredholm integral equation: 

o" dS~ f ( s l ,  s2)q(s~) = 1q(s2) (6) 

These results are considerably simplified when the soft part of the inter- 
action U(r)  does not depend on the internal states of the interacting par- 
ticles, in this case the integrations in Eqs. (3) and (4) can be performed 
independently, and we get 

,fo fo g = - k T l n  ~ ds e -~(~) - k T l n  a dr e -~-Bv(~) (7) 

Although the most general form of our model cannot be completely 
solved for arbitrary functions l ( s )  and U(r; sj ,  sj+z) except at T = 0, the 
eigenvalues of Eq. (6) can be found for some specific forms of these func- 
tions, and this is sufficient for the discussion of the appearance of differently 
ordered phases and of transitions between them. An example will be pre- 
sented in detail in Sections 4 and 5. A very simple case, corresponding to 
the CR model, will be discussed in the next section. 

3. P S E U D O  P H A S E  T R A N S I T I O N  

Consider now the simplest possible realization of the considered model: 

t ~ '  0 < s < e c ~ ,  0 < e <  1 (8) 
U(r)  = O, l ( s )  = 1 + u)d, Ea < s < cr 

Hence, a particle has a length equal to either d or (1 + v)d, depending on 
its actual internal state. 

Let xl = x (p ,  T)  denote the fraction of particles with actual length 
equal to d: 

xt = lira 

where <...) is the thermodynamic average, O(y) is the step function. 
A simple calculation similar to that in the preceding section leads to 

the result 
E 

xl = e + (1 - e)exp(-vp~) (10) 

where p, = p d / k T ,  and, from Eq. (7), 

g(p,  T )  = p d  + k T l n ( x l / e )  

v(p, T) = (~g/~P)T = [I + (1 - xl)u]d (11) 

C,(p ,  T)  = - T(~2g/OT2) v = k(p,v)2xt(1 - x l )  
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Hence, all thermodynamic quantities are continuous functions of p and T, 
and we have no true phase transition. However, the second derivatives, such 
as Cp, (~v/OT)~, (Ov/@)r, exhibit distinct anomalies as functions of T and p 
(the exception here is the excess heat capacity at constant volume: C~ = 0 
for all T and p). Figure 1 shows such an anomaly of C~, together with the 
corresponding values of xl. It is seen that the transition resembles one of 
second order, and that the high-pressure, low-temperature phase is the 
ordered one: almost all particles in this phase are in internal states with 
s ~< 1/2. The anomaly in Cp is very similar to (perhaps even identical with) 
the anomaly found by CR in their free-translator model. Note that the 
present model is computationally much simpler than the CR model [for- 
mulas (11) vs. numerical solutions of an integral equation], and at the 
same time it exhibits the same properties as the latter. Moreover, the order 
parameter xt describing the "rotational structure" of both "phases" is 
easily calculated here. Our result also proves that the pseudo-phase transi- 
tion obtained is the pure excluded-volume effect. 

Similar calculations can be easily performed, from Eq. (7), for other 
relations between the particle length l and its internal state s, and also for 
nonzero soft interparticle potentials U(r). Such details, however, change 
only the quantitative results, the qualitative picture remaining the same. 
The corresponding lattice model can also be considered. In this case the 
present model again leads to results similar to those of CR, in the sense 
that the nonanalytic dependence of the Helmholtz free energy on lattice 
separation appears. The details, however, seem not to be very interesting. 
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Fig. 1. A n o m a l y  in C~ and  the  c o r r e s p o n d i n g  values  o f  x l  for  ~ = 0.5. 
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. PHASE T R A N S I T I O N S  DUE TO THE SOFTENING OF THE 
H A R D  CORE 

Consider now the system characterized by the following potential 
(shown in Fig. 2 ) :  

U(r; sj, sj.+l) = (1 - r[d)W(ss, sj+l), r < d 
= 0 ,  r > d  

W(s:,  sj + 1) = w, 

= ( 1  - -  p3)w, 

= (1 -- 3)w, 

with 

s j, s~+ 1 e (0, ~ )  

s, e ( ,~,  ~), sj+~ ~ (0, ~ )  
or  vice versa 

s j, s j+ 1 E (E~, ~) 

(12) 

p ~ (0, 1), with l(s) given by Eq. (8). The calculation o f  ~ for this poten- 
tial is rather simple: it is sufficient to note that  the integral equation (5) 
reduces in this case to the following matrix equat ion:  

where 

C!  \q2! \q2/ 

A = EE(p~, ws, O, O) 

B = [e(1 - e)ll/Z exp(-vps/2)E(p~,  w~, p, 3) 

C = (1 - ~) exp(-~POE(p~,  Ws, 1, 3) 

d e x "  2 Jexp[p* - ( 1 -  p3)ws] - 1 1 }  
E(ps,  w~, p, ~) = P t -  ,Pd~ p:----(f---" p-~)w~ + 

w~ = w/kT, p~ = p d / k T  

The maximal eigenvalue o f  this equat ion is 

A,~x -- de-2",{A + C + [(A - C) 2 + 4B2]~t2}/2 (13) 

,o,[ 

rid 

Fig. 2. The shape of the potential U(r; sj, sj . l)  
for (a) sj, sj + 1 e (0, ~) ;  (b) sj e (0, ,o) and s~ + i e 
(co, ~), or vice versa; (c) sj, sj+l ~ (~cr, ~). 
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The equation of state is given by 

v = (Og/Op)T = (kT/Am~x)&~m~x/~p (14) 

which can be easily analyzed in the zero-temperature limit. Assume that 
the various parameters of the model satisfy the following set of  inequalities: 

� 8 9  

1 - -  3 2 8 ( 1  - -  p )  

1 - -  b' I~ 

Hence (from now on, we put d = 1) 

lim v = 1, 
T ~ 0  

= 1 + � 8 9  

= l + v ,  

= 2~  

Inverting the above relations, we get 

lira p = 0, 
T ~ 0  

= [(1 - 8)/(1 - v)lw, 

= [28(1 - p)/vlw, 

= (2p~/v)w,  

0 < v < 8 < l  

1 - p~ < 2~(1  - p)  (15)  
P 

p > 2wp~/v 

2w3(1 - p)/v < p < 2woOly 

w(1 - 5)/(1 - v) < p < 2w3(1 - p)/v 

0 < p  < (1 - 8)/(1 - v )  

2 < v (phase I) 

1 + v < v < 2 (phase I I )  

1 + �89 < v < 1 + v (phase I I I )  

1 < v < 1 + iv (phase IV) 

(16) 

The above result indicates the appearance of four different phases separated 
at T = 0 by sharp transitions. All these phases can be realized only when 
all inequalities (15) are fulfilled; if some of them cease to hold, some of the 
phases described by Eqs. (16) will disappear. 

The increase of  the temperature rounds off of  all discontinuities in 
Eqs. (16). However, true phase transitions can still be enforced at nonzero 
temperatures by the introduction into the model of  the Kac potential (7'8) 
~(r) = -a?,e  -yr, a > 0, in the so-called van der Waals limit (~---~ 0 taken 
after the thermodynamic limit). Namely, when every pair of  particles inter- 
acts through the Kac potential, the Helmholtz free energy and the equation 
of  state are (a) 

F(v, T) = CE[f(v, T)  - a/v], P(v, T) = MC[p(v, T) - a/v 2] (17) 

where CE and MC denote, respectively, "convex envelope" (in v) and 
"Maxwel l  construction," and where p(v, T)  and f (v ,  T)  are calculated in 
absence of the Kac potential. At T = 0, the short-range Helmholtz free 
energy f as a function of specific volume v is given, for the model (12), by 
segments separated by singular points (such that af/av is discontinuous), 
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and the function f -  a/v becomes nonconvex in some regions. At very low 
temperatures these singular points are rounded off, but, by continuity, the 
function f -  a/v remains nonconvex in almost the same regions as at T = 0 
(the term a/v does not change with temperature). Hence, the singularities 
of  the convex envelope of this function are preserved at sufficiently low 
temperatures. At higher temperatures the phase transitions will disappear 
successively. 

The above reasoning was given by Stell and Hemmer  for the case of  
one additional transition due to the core softening, and it remains valid in 
the present case. 

Assume that, in addition to (15), the following set of  inequalities is 
fulfilled: 

2pg a 25(1 - p) a 
W - -  > W 

v 1 + v/2 v (1 + v)(1 + v/2) 

1 - g  a 
> w 1 ~  2(1 + v) > 0 (18) 

Hence, performing the Maxwell construction on Eq. (17) with p given by 
Eq. (16), we again obtain four well-separated phase transitions for T = 0: 

lim P(v, T)  = O, 2 < v (I) 
T ~ O  

1 - 3  a 
= w 1 ~  2(1 + v)' 1 + v < v < 2 (II) 

2~(1 - p) a v 
= W v (1 -t-v)(1 + v / Z ) '  1 +-~ < v < 1 + v (III)  

23p a v 
= w 1 < v < 1 + ~  (IV) 

v 1 + v ~ '  

(19) 

For T > 0, the equation of state cannot be written directly in closed form: 
one must calculate the relation v = v(p, T)  from Eq. (14), invert it into 
p = p(v, T),  and insert the result into Eq. (17). As an example, a few numer- 
ically calculated isotherms are shown in Figs. 3 and 4. 

Stell and Hemmer  ~4-6'11~ discussed a similar model of  hard rods with a 
soft repulsion, but without internal degrees of  freedom, and found two 
transitions corresponding to our phases I and 1V (if � 9  1) or I and I I  
(if E-+ 0). These phases were interpreted by them, respectively, as the van 
der Waals liquid-gas phase transition (low-density region) and the iso- 
structural one (high-density region). The introduction of rotations coupled 



One-D imens iona l  Mode l  w i th  Phase Transi t ions 643 

10.0 

% 

80 

(a) 

6.0 

4.0 

Po 

60 

50 

4.0 \.,\ 

x 
30 " 13 

2 .C  ' . , \ 

\ ~ \ ,  

, , , ~"~'----'----'~-r------~ .... J 
0 "-~.t 0 20 30 v/d 40 

Fig .  3. T h e  i s o t h e r m s  o f  t he  s y s t e m  in  t he  a b s e n c e  o f  the  K a c  l o n g - r a n g e  p o t e n t i a l  fo r  

t h e  f o l l o w i n g  p a r a m e t e r  s e t s :  (a)  e = 0.5, (b) ~ = 0 .01 ;  v = 0.5, w/a = 2.0, 3 = 0.9, 

p = 0.8, a n d  ~1 = 0.01,  ~'2 = 0.05,  ~'a = 0.2, r e s p e c t i v e l y  (~- = kdT/a). 

9.0 

P(vld) 

70 

(a) 
L 

5.0' , ~  

| 

3.0 , 

I 
! 

! 
' -4 

1.0 

~0 

P(v/d) 

-1.0 10 20 3.0 v/d 4.0 

Fig. 4. The isotherms of the system with the Kac long-range potential  included, for 
the parameter  sets as in Fig. 3. The dashed straight lines denote the Maxwell construc- 
t ion performed on isotherms ~'i. 

50 i 
(b) 

\ 
3.0 \ 

\ 
L X j ~  

~T_ 2 '~ 
I ~I ~ '%. ,, 

I ,.oF -.~. ',,,..... 

~/ '~3 / 
~'x 1011 , I , I " ~ -  x.~ ' 1.0 1.5 v/d 20 



644 A, Fulifiski and L. Longa 

with the short-range repulsion leads to the appearance of two new high- 
density phases and two new transitions. This suggests the interpretation of 
these new transitions as the rotational ones. This point will be discussed in 
more detail in the next section. 

The critical properties of the present model are not especially interest- 
ing. In one-dimensional systems with short-range interactions, phase transi- 
tions are possible only in the zero-temperature limit. The well-known device 
used for the continuation of such transitions to finite temperatures is the 
Kac potential together with the van der Waals limit. This device is equiva- 
lent to the molecular field approach, an approach which becomes exact for 
one-dimensional systems. However, it is well known that the molecular 
field approach always leads to classical critical behavior. It is also known 
that the presence of several transitions with critical points depending on 
changeable parameters may lead to the confluence of critical points. <4,5~ 
Then, because of the analyticity of a free energy (17) in p and T in the one- 
phase region, the critical exponents are the same as in the Landau general 
theory of critical behavior applied to a fluid, c12'13~ 

5. S T R U C T U R E  OF THE PHASES 

In order to investigate the structure of the different phases found in the 
preceding section, we shall calculate two order parameters. The first one, 
xl ,  is given by Eq. (9); the second, x2, is defined as the fraction of pairs of 
adjacent particles with both actual lengths equal to d: 

1N-I  
x2 = r~lim ~r j--~l= <0(Ec; - sj)O(E~ - sj+l)> (20) 

Both averages, (9) and (20), must now be calculated with the Kac long-range 
part of the potential switched on. Such calculations cannot be performed in 
a straightforward way (as in Section 3). Hence we shall make use of another 
method, a well-known simple version of the functional differentiation: 
modify the short-range part of the potential by the addition of the term 

N N-I 

1=1 ]=i 

and calculate the appropriate Helmholtz free energy per particle F(v, T, h; a) 
(h is equal to hi or h2). Using the formula (17), we have 

F(v, T, h; a ) =  CE[f(v, T, h ) - ; ]  = CE[g(p, T, h ) - p v - ; ]  (21) 

Now both order parameters can be calculated by differentiating the appro- 
priate free energy (21) with respect to h, in the limit h --+ 0. 
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It is necessary, however, to bear in mind that in the region of coexistence 
of phases (given by straight-line segments of the CE construction) the order 
parameters are not defined uniquely as functions of v. To get rid of such 
ambiguities, denote by CRM (coexistence region modification) the pro- 
cedure for removing all values of v belonging to the region of coexistence 
of phases. The order parameters will then be given by 

= CRM[~F(v, T, hi; a) 
x~(v, T; a) [_ ehl ~1=0] 

CRM[.(A - C + L)A + 2B 2] 
[ (22) 

CRM [~F(v, T, _h2; a) ] 
x2(v , T; a) = [ Oh2 h2= o 

= CRM -~ C + L)L] (23) 

with L = [(A - C) 2 + 4B2] 112, A, B, and C being the same as in Section 4. 
The CRM procedure is equivalent to the switching on of  the Kac long-range 
potential. 

When the Kac potential is switched off (a = 0), the order parameters 
are given directly by the expressions within square brackets in Eqs. (22) 
and (23). It is thus possible to calculate xl(v, T; O) and x2(v, T; 0) for all 
v and T. 

Let us first calculate the zero-temperature limit of the order parameters. 
Assuming that the inequalities (15) are fulfilled, we get 4 

I~  phase I 

lira xl(v, T; 0) = phase II 
r -o  0.5 phase lII  

1.0 phase IV 

l imx2(v,T;O)=IO 2 
r~o kl.O 

phase I 

phases II, III 

phase IV 

(24) 

4 It is to be noted that, to find the values of the order parameters for the low-density 
phase I, as given by relations (24), the low-density limit v-+ ~ must be performed 
before the low-temperature limit T--~ 0. Reversal of this sequence of limits would 
result in unphysical values xl = x2 = 1 for the low-density phase. 
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The above result shows that, at T = O, the low-density phase (phase I) is 
characterized by the chaotic distribution of the values of the internal param- 
eters, whereas the remaining phases are ordered, each in a different manner, 
with respect to the internal states of the particles. 

In phases I1 and IV every particle is in the same internal state, corre- 
sponding to the long (phase I I) or short (phase IV) particle diameter. In 
phase III, short and long particles are distributed alternately. 

At nonzero temperatures the sharp ordering described above is rounded 
off a little; however, the qualitative differences remain very distinct. 

6. FINAL REMARKS 

The results presented in this paper show that the internal states of the 
molecules, when coupled with the intermolecular potential, can lead to the 
appearance of new phases. These phases differ in their structure with respect 
to the internal states of the particles. To obtain these results it is not neces- 
sary to specify the character of the internal degrees of freedom--i t  is suffi- 
cient that the intermolecular potential depends on them. Hence the system 
considered here can serve as an exactly soluble one-dimensional model of 
several physical systems. 5 Probably the simplest is the identification men- 
tioned in the introduction--of  the internal degree of freedom as the one- 
dimensional representation of the rotational motion. In this case the struc- 
ture of the phases would differ in the rotational behavior of the constituent 
particles. 

The analogy of our one-dimensional model with liquid-crystalline 
phases is perhaps a little far-fetched. However, if we imagine one-dimensional 
cuts through isotropic, nematic, and various smectic phases, the resulting 
pictures will be somewhat similar to those discussed in the preceding section. 
This analogy is further supported by the observation that the change of the 
parameter v connected with the maximal diameter of the molecule beyond 
some limits [determined by inequalities (15) and (18)] results in the vanish- 
ing of some phase or phases. A similar situation was observed in a homol- 
ogous series of liquid crystals, where, e.g., the changes of the lengths of end 
chains of the molecules cause the vanishing of some phases and/or the 
appearance of other phases. (15,16~ 

The transitions between real liquid-crystalline phases in pure thermo- 
tropic substances depends rather weakly on the density. Thus the present 
model with its distinct dependence on density will describe the solution of 

5 A similar ,  bu t  app rox ima te ,  d i scuss ion  was presented  by K u r a m o t o  and  F u r u k a w a ,  (14~ 
who  a t t empted  to describe i sos t ruc tura l  phase  t rans i t ions  by m e a n s  o f  a t h ree -d imen-  
s ional  mode l  with a var iable  shape  o f  the  molecules .  We are  indeb ted  to the  Referee 
for call ing our  a t ten t ion  to this work.  
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liquid-crystalline molecules in an inert solvent rather than the pure liquid 
crystal. The density dependence (together with its critical points) o f  our  
model will then correspond to the concentrat ion dependence o f  the liquid- 
crystalline solution. 

Another  nons tandard  proper ty  o f  the discussed model is the crossing o f  
isotherms, both  for the Kac  potential switched on and switched off (cf. 
Figs. 3 and 4). Such a behavior is found whenever (Ov/~T)p changes sign. 
The best-known example is liquid water a round  its max imum density point,  
I f  the analogy between our  model and liquid crystals is not  completely 
spurious, this result will indicate the possibility o f  the observation o f  regions 
o f  negative thermal expansion coefficient in liquid crystals. To our  knowl- 
edge, such an effect is not  known so far, and probably  should be s o u g h t - -  
according to a preceding r emark - - i n  solutions rather than in pure liquid- 
crystalline substances. 
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